2013 Consumer Confidence Report

Water System Name:	Kelly Mutual Water Company	Report Date: 4/28/2014
_	1 10 1	red by state and federal regulations. This report shows her 31, 2013 and may include earlier monitoring data.
Este informe contiene entienda bien.	información muy importante sobre su a	gua potable. Tradúzcalo ó hable con alguien que lo
Type of water source(s)	in use: Ground water Well	
Name & general locatio	n of source(s): Well 01 1430 Industrial 1	Drive, Sebastopol, Ca
Drinking Water Source	Assessment information: Conducted Health Serv	January 2002 by Calif Dept of vices
contaminants: Junk/scrap/salvage yard Lumber processing and Machine shops Sewer collection system	ds manufacturing ns itaminants detected in the water supply, ho	ng activities not associated with any detected over the source is still considered vulnerable to
	rhood. Contact a board member for details	participation: Quarterly, last week in month, Jan, s. Meeting notice with agenda posted at entrance to
For more information, c	ontact: Bernie Hovden	Phone: (707)829-3824

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

ppb: parts per billion or micrograms per liter (μg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial
 processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural
 application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the California Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 7, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The Department allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA					
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of months in violation	MCL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria	(In a mo.) <u>0</u>	1*	More than 1 sample in a month with a detection	0	Naturally present in the environment
Fecal Coliform or E. coli	(In the year)	0	A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or <i>E. coli</i>	0	Human and animal fecal waste
TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER					

TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER							
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of samples collected	90 th percentile level detected	No. sites exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppb)	7/16/2013	5	<5.2	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	7/16/2013	5	0.243	0	1.3	0.3	Internal corrosion of household

						plumbing systems; erosion of natural deposits; leaching from wood preservatives
	TABLE 3	- SAMPLING	RESULTS FOR	SODIUM A	AND HARDI	NESS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	6/12/2013	19.0		none	none	Salt present in the water and is generally naturally occurring
Hardness (ppm)	6/12/2013	40.0		none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
Any violation of an MCL or A	AL is asterisked	. Additional infor	mation regarding	the violation i	s provided late	r in this report.
TABLE 4 – DE	FECTION OF	F CONTAMIN	ANTS WITH A	PRIMARY	DRINKING	WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Aluminum (ppm)	6/12/2013	0.230		1	0.6	Erosion of natural deposits; residue from some surface water treatment processes
Arsenic(ppb)	6/12/2013	8.7		10	0.004	Erosion of natural deposits; runoff from orchards; glass and
Arseme(pp0)						
Floride(ppm)	6/12/2013	0.34		2	1	electronics production wastes Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories

Chlorine(ppm)	monthly	0.14	0.04 -0.4	4		Drinking water disinfectant added for treatment
TABLE 5 – DETE	ECTION OF	CONTAMINA	NTS WITH A <u>SE</u>	CONDAR	<u>Y</u> DRINKIN	G WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Chloride(ppm)	6/12/2013	10.0		500		Runoff/leaching from natural deposits; seawater influence
Color (units)	6/12/2013	5.00		15		Naturally-occurring organic materials
Iron(ppb)	12/11/13 (quarterly)	3750*	1900 - 5500	300		Leaching from natural deposits; industrial wastes
Specific Conductance(μS/cm	6/12/2013	170.0		1600		Substances that form ions when in water; seawater influence
Sulfate(ppm)	6/12/2013	5.70		500		Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids(ppm)	6/12/2013	170.0		1000		Runoff/leaching from natural deposits
Turbidity(NTU)	6/12/2013	1.60		5		Soil runoff

2013 SWS CCR Form Revised Jan 2014

TABLE 6 – DETECTION OF UNREGULATED CONTAMINANTS

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects Language

^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Kelly Mutual Water company is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT							
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language			
Total Coliform Bacteria	I forgot to take the required sample in July	1 month	Follow up sample tested negative for coliform. We have not had a positive test in many years. added reminder to calendar	Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially-harmful, bacteria may be present. The required monthly test was not taken			

iron	Our water is high in iron	constant	Quarterly monitoring required by state	"Iron was found at levels that exceed the secondary MCL of 300 ug/L. The iron MCL was set to protect you against unpleasant aesthetic effects (e.g., color, taste, and odor) and the staining of plumbing fixtures (e.g., tubs and sinks) and clothing while washing. The high iron levels are due to leaching of natural
				leaching of natural deposits."

For Water Systems Providing Ground Water as a Source of Drinking Water

TABLE 7 – SAMPLING RESULTS SHOWING FECAL INDICATOR-POSITIVE GROUND WATER SOURCE SAMPLES							
Microbiological Contaminants (complete if fecal-indicator detected)	Total No. of Detections Sample Dates MCL [MRDL] PHG (MCLG) Typical Source of Contaminant [MRDLG]						
E. coli	0 (In the year)		0	(0)	Human and animal fecal waste		
Enterococci	0 (In the year)		TT	n/a	Human and animal fecal waste		
Coliphage	0 (In the year)		TT	n/a	Human and animal fecal waste		

Summary Information for Fecal Indicator-Positive Ground Water Source Samples, Uncorrected Significant Deficiencies, or Ground Water TT

SPECIAL	NOTICE OF FECAL IND	ICATOR-POSITIVE GR	OUND WATER SOURCE	SAMPLE	
	SPECIAL NOTICE FOR	UNCORRECTED SIGNI	FICANT DEFICIENCIES		
VIOLATION OF GROUND WATER TT					
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language	

(that must be met through the water treatment process) 2 - Not exceed NTU for more than eight consecutive ho	Page 6 o				ort	onsumer Confidence Repo
TABLE 8 - SAMPLING RESULTS SHOWING TREATMENT OF SURFACE WATER SOURCE Treatment Technique (a) Type of approved filtration technology used) Turbidity Performance Standards (b) Turbidity Performance Standards (b) Turbidity Performance Standards (b) Turbidity Performance Standard No. 1. To else st than or equal toNTU in 95% of measurement that must be met through the water treatment process) Not exceedNTU at any time. A required process intended to reduce the level of a contaminant in drinking water. A required process intended to reduce the level of a contaminant in drinking water and is a good indicator of water quality and filtra Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity results which meet performance standards are considered to be in compliance with filtration requirements. Any violation of a TT is marked with an asterisk. Additional information regarding the violation is provided below. Summary Information for Violation of a Surface Water TT VIOLATION OF A SURFACE WATER TT TT Violation Explanation Duration Actions Taken to Correct the Violation Explanation Duration Turbidity results and the Violation Turbidity results which meet performance standards are considered to be in compliance with filtration requirements. Any violation of a Surface Water TT						
Turbidity Performance Standards (b) Turbidity Performance Standards (c) Turbidity Performance Standards (d) Turbidity Performance Standard (d) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity (measurement) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity (measurement) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity (measurement) Turbidity (measurement)		Vater	ource of Drinking W	ce Water as a S	ystems Providing Surfa	For S
Turbidity Performance Standards (b) Turbidity Performance Standards (b) Turbidity Performance Standards (b) Turbidity Performance Standards (b) Turbidity Performance Standards (c) Turbidity Performance Standard No. 1. Turbidity Performance Standard No. 1. Turbidity Performance Standard No. 1. Turbidity measurement during the year Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity results which meet performance standards are considered to be in compliance with filtration requirements. **Any violation of a TT is marked with an asterisk. Additional information regarding the violation is provided below. **Summary Information for Violation of a Surface Water TT **VIOLATION OF A SURFACE WATER TT TT Violation Explanation Duration Actions Taken to Correct the Violation of Lie Provided Surface Water TT **Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity results which meet performance standards are considered to be in compliance with filtration requirements. **Any violation of a TT is marked with an asterisk. Additional information regarding the violation is provided below. **Summary Information for Violation of a Surface Water TT **Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity results which measurement during the violation of a surface water quality and filtra Turbidity results which measurement during the violation of a Surface Water TT **Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity results which measurement of the cloudiness of	ES	SOURCES	OF SURFACE WATER	ING TREATMEN	SAMPLING RESULTS SHOW	TABLE 8 - S
Turbidity Performance Standards (b) that must be met through the water treatment process) Turbidity Performance Standards (b) 1 - Be less than or equal toNTU in 95% of measurement 2 - Not exceedNTU at any time. Performance Standard No. 1. Highest single turbidity measurement during the year Number of violations of any surface water treatment equirements A required process intended to reduce the level of a contaminant in drinking water. Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity results which meet performance standards are considered to be in compliance with filtration requirements. Any violation of a TT is marked with an asterisk. Additional information regarding the violation is provided below. Summary Information for Violation of a Surface Water TT VIOLATION OF A SURFACE WATER TT TT Violation Explanation Duration Actions Taken to Correct the Violation of the Viola				NA	technology used)	
west monthly percentage of samples that met Turbidity Performance Standard No. 1. Itighest single turbidity measurement during the year Number of violations of any surface water treatment equirements A required process intended to reduce the level of a contaminant in drinking water. Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity results which meet performance standards are considered to be in compliance with filtration requirements. Any violation of a TT is marked with an asterisk. Additional information regarding the violation is provided below. Summary Information for Violation of a Surface Water TT VIOLATION OF A SURFACE WATER TT TT Violation Explanation Duration Actions Taken to Correct the Violation Lieuwing Actions Taken to Correct the Violation Lieuwing Actions Taken to Correct the Violation Actions Taken to Correct the Violation Lieuwing Actions Taken to Correct the Violation Lieuwing Actions Taken to Correct the Violation The Violation Correct the Violation Correct the Violation The Violation Correct C	1 – Be less than or equal to NTU in 95% of measurements in a month. 2 – Not exceed NTU for more than eight consecutive hours.			Turbidity Performance Standards (b) (that must be met through the water treatment process)		
Number of violations of any surface water treatment equirements O A required process intended to reduce the level of a contaminant in drinking water. O Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity results which meet performance standards are considered to be in compliance with filtration requirements. Any violation of a TT is marked with an asterisk. Additional information regarding the violation is provided below. Summary Information for Violation of a Surface Water TT VIOLATION OF A SURFACE WATER TT TT Violation Explanation Duration Actions Taken to Correct the Violation Lieuwing the Violation Lieuwing the Violation Lieuwing the Violation Correct the Violation Lieuwing the Violation Correct the Violation Lieuwing the Violation Correct Corr						
A required process intended to reduce the level of a contaminant in drinking water. Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtra Turbidity results which meet performance standards are considered to be in compliance with filtration requirements. Any violation of a TT is marked with an asterisk. Additional information regarding the violation is provided below. Summary Information for Violation of a Surface Water TT VIOLATION OF A SURFACE WATER TT TT Violation Explanation Duration Actions Taken to Correct the Violation Lieuwing Market Correct to the Violation Lieuw					surement during the year	Highest single turbidity meas
A required process intended to reduce the level of a contaminant in drinking water. Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtrat Turbidity results which meet performance standards are considered to be in compliance with filtration requirements. Any violation of a TT is marked with an asterisk. Additional information regarding the violation is provided below. Summary Information for Violation of a Surface Water TT VIOLATION OF A SURFACE WATER TT TT Violation Explanation Duration Actions Taken to Correct the Violation Lieuwith an asterisk and the Violation the Violation Lieuwith and the Violation the Violat					surface water treatment	
TT Violation Explanation Duration the Violation La						<u> </u>
	alth Effects		Actions Taken to Correct			TT Violation
Summary Information for Operating Under a Variance or Exemption	anguage	Lang	the violation			
Summary Information for Operating Under a Variance or Exemption						
Summary Information for Operating Under a Variance or Exemption						
Summary Information for Operating Under a Variance or Exemption						
		ption	a Variance or Exem	erating Under	nary Information for Op	Summ

Consumer Confidence Report	Page 7 of 7
·	